1. Which K_{sp} value indicates a salt with the greatest solubility in water?

- (1) 4.0×10^{-10}
- (3) 2.0×10^{-6}
- (2) 3.0×10^{-8}
- (4) 1.0×10^{-4}

2. Given the system at equilibrium:

$$PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq)$$

How will the addition of Na₂CO₃(aq) affect [Pb²⁺](aq) and the mass of PbCO₃(s)?

- (1) [Pb²⁺] (aq) will increase and the mass of PbCO₃(s) will increase.
- (2) [Pb²⁺] (aq) will increase and the mass of PbCO₃(s) will decrease.
- (3) [Pb2+] (aq) will decrease and the mass of PbCO3(s) will increase.
- (4) [Pb²⁺] (aq) will decrease and the mass of PbCO₃(s) Will decrease.

3. Given the reaction:

$$N_2(g) + O_2(g) + 182.6 \text{ kJ} \leftrightarrow 2 \text{ NO}(g)$$

Which change would cause an immediate increase in the rate of the forward reaction?

- (1) decreasing the reaction temperature
- (2) decreasing the reaction pressure
- increasing the concentration of NO(g)
- (4) increasing the concentration of N₂(g)
- 4. Given the reaction at equilibrium:

$$2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g)$$

Which is the correct equilibrium constant expression for the reaction?

$$K_{eq} = \frac{[2SO_3]}{[2SO_2] + [O_2]}$$

$$K_{eq} = \frac{[SO_3]}{[SO_2][O_2]}$$

(3)
$$K_{eq} = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

$$K_{eq} = \frac{[SO_3]^2}{[SO_2]^2 + [O_2]}$$

5. Given the reaction at equilibrium:

 $NaCl(s) \leftrightarrow Na^{+}(aq) + Cl^{-}(aq)$

The addition of KCl to this system will cause a shift in the equilibrium to the

- (1) left, and the concentration of the Na⁺(aq) ions will increase
- (2) right, and the concentration of the Na (aq) ions will increase
- (3) left, and the concentration of the Na (aq) ions will decrease
- (4) right, and the concentration of the Na (aq) ions will decrease

6. Which equilibrium constant indicates an equilibrium mixture that consists largely of products?

- (1) $K = 1 \times 10^{0}$
- (3) $K = 3 \times 10^{-14}$
- (2) $K = 2 \times 10^{10}$
- (4) $K = 4 \times 10^{-2}$

The value of the equilibrium constant of a chemical reaction will change when there is an increase in the

- (1) concentration of the products
- (3) pressure
- (2) concentration of the reactants
- (4) temperature

- 8. A chemical reaction has reached equilibrium when
 - (1) the reverse reaction begins
 - (2) the forward reaction ceases
 - (3) the concentrations of the reactants and products become equal
 - (4) the concentrations of the reactants and products become constant

9. Given the system at equilibrium and 25°C:

 $AgCl(s) \leftrightarrow Ag^{\dagger}(aq) + Cl^{-}(aq),$

Which change will affect the value of the solubility product, K, for AgCl(s)?

- (1) increasing the temperature of the AgCl solution
- (2) increasing the amount of AgCl(s)
- (3) decreasing the concentration of Cl (aq)
- (4) decreasing the concentration of Ag⁺(aq)

10. Which factors must be equal in a reversible chemical reaction at equilibrium?

- (1) the activation energies of the forward and reverse reactions
- (2) the rates of reaction of the forward and reverse reactions
- (3) the concentrations of the reactants and products
- (4) the potential energies of the reactants and products

11. Given the reaction at equilibrium:

$$N_2(g) + O_2(g) + energy \leftrightarrow 2NO(g)$$

Which change will result in a decrease in the amount of NO(g) formed?

- (1) increasing the temperature
- (2) increasing the concentration of O₂(g)
- (3) decreasing the concentration of N₂(g)
- (4) decreasing the pressure

12. Given the reaction at equilibrium:

 $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 22 \text{ kcal}$

Which stress would cause the equilibrium to shift to the left?

- (1) increasing the pressure
- (3) adding H₂(g) to the system
- (2) increasing the temperature
- (4) adding N₂(g) to the system

13. Given the reaction at equilibrium:

 $H_2(g) + Cl_2(g) \leftrightarrow 2HCl(g)$

As the pressure increases at constant temperature, the number of moles of HCl

- (1) decreases
- (3) remains the same

(2) increases

14. Given the equilibrium reaction at constant pressure:

 $2HBr(g) + 17.4 kcal \leftrightarrow H_2(g) + Br_2(g)$

When the temperature is increased, the equilibrium will shift to the

- (1) left, and the concentration of HBr(g) will decrease
- (2) left, and the concentration of HBr(g) will increase
- (3) right, and the concentration of HBr(g) will decrease
- (4) right, and the concentration of HBr(g) will increase

15. Given the reaction at equilibrium:

 $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g) + heat$

Which change will shift the equilibrium to the right?

- (1) decreasing the pressure
- (3) increasing the temperature
- (2) decreasing [SO₂]
- (4) increasing [O₂]

16. Given the reaction at equilibrium:

 $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g) + heat$

Which change will shift the equilibrium to the right?

- (1) increasing the pressure
- (3) decreasing the amount of O₂

(g)

- (2) increasing the temperature
- (4) decreasing the amount of SO

Do you know your shift?

17. Which is the correct equilibrium expression for the reaction $3A(g) + 4B(g) \leftrightarrow 2C(g) + 5D(g)$?

(1)
$$K_{eq} = \frac{[C]^2[D]^5}{[A]^3[B]^4}$$
 (3) $K_{eq} = \frac{[A]^3[B]^4}{[C]^2[D]^5}$

(2)
$$K_{eq} = \frac{[B]^4 [D]^5}{[A]^3 [C]^2}$$
 $K_{eq} = \frac{[A]^3 [C]^2}{[B]^4 [D]^5}$

18. Given the reaction at equilibrium:

 $Mg(OH)_2(s) \leftrightarrow Mg^{2+}(aq) + 2OH(aq)$

The solubility product constant for this reaction is correctly written as

(1)
$$K_{sp} = [Mg^{2+}][OH]^2$$

(3)
$$K_{sp} = [Mg^{2+}][2OH]$$

(2)
$$K_{xy} = [Mg^{2+}] + [OH]^2$$

(4)
$$K_{sp} = [Mg^{2+}] + [2OH]$$

19. Given the Haber reaction at equilibrium:

 $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + heat$

Which stress on the system will decrease the production of NH₃(g)?

- (1) decreasing the temperature on the system
- decreasing the concentration of H₂(g)
- (3) increasing the pressure on the system
- (4) increasing the concentration of N₂(g)
- 20. Which of the following salts is most soluble at 25°C?
 - (1) zinc oxalate, $K_{sp} = 1.40 \times 10^{-9}$
 - (2) lead (II) oxalate, $K_{xy} = 8.55 \times 10^{-10}$ (3) cadmium oxalate, $K_{xy} = 1.44 \times 10^{-8}$

 - (4) manganese (II) oxalate, $K_{sp} = 1.72 \times 10^{-7}$
- 21. Given the reaction at equilibrium:

 $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + heat$

At constant temperature, which changes would produce a greater yield of $NH_3(g)$?

- increasing the pressure and decreasing the concentration of N2(g)
- (2) increasing the pressure and increasing the concentration of N₂(g)
- (3) decreasing the pressure and decreasing the concentration of N2(g)
- decreasing the pressure and increasing the concentration of N₂(g)
- 22. A saturated solution is represented by the equation

 $AgCl(s) + heat \leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$.

Which change will cause an increase in the amount of AgCl(s)?

- (1) an increase in the concentration of Cl (aq)
- a decrease in the concentration of Ag (aq)
- an increase in temperature (3)
- a decrease in pressure
- 23. One mole of each of the salts below is added to a liter of water. Which salt will produce the highest concentration of carbonate ions (CO₃²)?
 - (1) BaCO₃, $K_{sp} = 2.6 \times 10^{-9}$
- (3) MgCO₃, $K_{sp} = 1.2 \times 10^{-5}$ (4) CaCO₃, $K_{sp} = 5.0 \times 10^{-9}$
- (2) $ZnCO_3$, $K_{sp} = 1.4 \times 10^{-11}$
- 24. Given the reaction at equilibrium: $PbCl_2(s) \leftrightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$

Which is the correct solubility product constant expression for the reaction?

Which is the correct solubility product constant expression for the rea
$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$
 $K_{sp} = \frac{[Cl^{-}]^{2}}{[Pb^{2+}]}$

(2)
$$K_{sp} = [Pb^{2+}][Cl^{-}]$$
 (4) $K_{sp} = \frac{[Cl^{-}]}{[Pb^{2+}]}$

25. Given the equilibrium reaction in a closed system:

$$H_2(g) + I_2(g) + heat \leftrightarrow 2 HI(g)$$

What will be the result of an increase in temperature?

- (1) The equilibrium will shift to the left and [H₂] will decrease.
- The equilibrium will shift to the left and [H2] will increase.
- The equilibrium will shift to the right and [HI] will decrease.
- The equilibrium will shift to the right and [HI] will increase.
- 26. Given the reaction at equilibrium:

$$A(g) \leftrightarrow B(g) + C(\ell)$$

Which equilibrium constant indicates an equilibrium mixture with the smallest concentration of B(g)?

- (1) $K_{eq} = 1.0 \times 10^{-10}$
- (2) $K_{eq} = 1.0 \times 10^{0}$
- (3) $K_{eq} = 1.0 \times 10^{1}$ (4) $K_{eq} = 1.0 \times 10^{10}$
- 27. Given the solution at equilibrium:

 $PbI_2(s) \leftrightarrow Pb^{2+}(aq) + 2\Gamma(aq)$

The addition of which nitrate salt will cause a decrease in the concentration of I (aq)?

(1) KNO₃

(3) Ca(NO₃)₂

(2) LiNO₃

(4) Pb(NO₃)₂